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This appendix has six parts:

1. Proof that ab = c − d in Equations 1 through 3.

2. Proof that OLS estimators of b and d in Equation 3 are prone to bias in infinitely large

samples.

3. Proof that experimental mediation analyses are prone to bias if there are fewer experimental

interventions than mediators affected by the interventions.

4. Proof that experimental estimates of indirect effects apply only to subjects who (a) are

affected by the experimental interventions or (b) would be affected by the experimental

interventions if they were exposed to those interventions.

5. Proof that experimental mediation analyses cannot identify average indirect effects in the

presence of causal heterogeneity.

6. SPSS code to demonstrate that experimental mediation analyses cannot identify average

indirect effects in the presence of causal heterogeneity.

The proofs that we present here do not break new ground. All of them may be found in other

works, albeit in contexts that may make their relevance to mediation analysis unclear. To guide

readers who want more detailed discussion of the issues presented here, we refer to these other

works throughout this appendix.

1. Equivalence of ab and c − d in Equations 1 through 3

Let X = X1, . . . , Xn, Y = Y1, . . . ,Yn, e1 = e11, . . . , en1, e2 = e12, . . . , en2, and e3 = e13, . . . , en3.

We assume that X has been randomized such that X ⊥⊥ e1, e2, e3. Proof by direct calculation:

substituting Equation 1 into Equation 3 yields

Y = (bα1 + α3) + (ab + d)X + (be1 + e3) ,
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from which we see that

cov(X,Y) = (ab + d)var (X)

⇒ ab =
cov(X,Y)

var (X)
− d.

Inspection of Equation 2 shows that c = cov(X,Y) /var (X), completing the proof. See

MacKinnon, Warsi, and Dwyer (1995, 45-46) for a similar treatment.

2. OLS Estimators of b and d in Equation 3 Are Inconsistent

Consider the equation

Y = dX̃ + bM̃ + e3, (A1)

where X̃ = X − X, M̃ = M − M, X = X1, . . . , Xn, M = M1, . . . ,Mn, and e3 = e13, . . . , en3.

Let e1 = e11, . . . , en1 and e2 = e12, . . . , en2. We assume that X has been randomized such

that X ⊥⊥ e1, e2, e3, and by extension, X̃ ⊥⊥ e1, e2, e3. Biases in the OLS estimators of d and

b in Equation A1 are the same as the biases for the OLS estimators of d and b in Equation 3.

Following Muller et al. (2005), we use the mean-centered predictors of Equation A1, which make

for easier interpretation and simplify the calculations.
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Let X̃ be the design matrix [X̃, M̃]. The OLS estimators are

 d̂

b̂

 = (X̃′X̃)−1X̃′(dX̃ + bM̃ + e3)

=

 d

0

 +
 0

b

 + (X̃′X̃)−1X̃′e3, where

(
X̃′X̃

)−1
X̃′e3 =



∑
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∑

X̃ie1i
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e1iX̃i
∑

e1ie3i−a
∑

X̃2
i
∑

e1ie3i∑
e1

2
i
∑

X̃2
i −

∑2 e1iX̃i

∑
e1ie3i

∑
X̃2

i −
∑

e1iX̃i
∑

X̃ie3i∑
e1

2
i
∑

X̃2
i −

∑2 e1iX̃i


.

Now,

plim[b̂] = b + plim

∑ e1ie3i
∑

X̃2
i −

∑
e1iX̃i

∑
X̃ie3i∑

e1
2
i
∑

X̃2
i −

∑2 e1iX̃i


= b +

cov(e1, e3)
var (e1)

.

And by the same logic,

plim[d̂] = d − plim

[
a
∑

e1ie3i∑
e1

2
i

]
= d − a ·

cov(e1, e3)
var (e1)

.

Thus, whenever cov(e1, e3) , 0, ordinary-least-squares estimators of d and b in Equation 3 are

biased even in infinitely large samples.

Rosenbaum (1984) offers a wide-ranging discussion of the problem. Gelman and Hill

(2007, 188-94) provide an intuitive treatment.
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3. Experimental Mediation Analyses Are Prone to Bias If Interventions Do Not

Isolate Particular Mediators

For simplicity, consider a model in which a treatment X is mediated by exactly two variables:

Y = α3 + dX + b1M1 + b2M2 + e3,

where e3 is a mean-zero error term that represents the cumulative effect of omitted variables. We

assume that X has been randomly assigned such that X ⊥⊥ e3. Assume that a random intervention

Z affects M1 but that it is uncorrelated with other variables that affect Y (Z ⊥⊥ X,M2, e3). The

latter assumption is the exclusion restriction, which is required for instrumental-variables

estimation of causal effects (e.g., Wooldridge, 2008, ch. 15).

Given these assumptions,

cov(Z,Y) = b1cov(Z,M1)

⇒ b1 =
cov(Z,Y)

cov(Z,M1)
.

We can use the sample covariances to calculate a consistent estimator of b1,

b̂1 =
ĉov(Z,Y)

ĉov(Z,M1)
. (A2)

b̂1 is the traditional instrumental-variables estimator; in instrumental-variables parlance, Z is an

instrument for M1. But if Z affects both M1 and M2,

cov(Z,Y) = b1cov(Z,M1) + b2cov(Z,M2)

⇒ b1 =
cov(Z,Y)

cov(Z,M1)
−

b2cov(Z,M2)
cov(Z,M1)

. (A3)
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To estimate b1 in this case, we must estimate the right-hand side of Equation A3 with quantities

(e.g., sample covariances) that can be computed from the observed values of X,M1,M2, and

Z. We cannot do this because b2 is unknown and cannot be estimated with the data at hand.

In particular, the traditional estimator given in Equation A2 is biased in infinite samples by

−
b2cov(Z,M2)
cov(Z,M1) .

The experimental approach can be extended to account for multiple hypothesized

mediators. But in this case, one must have at least as many instruments as hypothesized

mediators: this is part of the rank condition for estimating effects with instrumental variables

(Koopmans, 1949; Wooldridge, 2002, 85-86). To avoid problems stemming from mixtures of

local average treatment effects (see Morgan & Winship, 2007, 212), we further recommend that

each experimentally created instrument be crafted to affect exactly one mediator: Z1 should affect

only M1, Z2 should affect only M2, and so forth. But see Angrist and Imbens (1995; also Angrist

& Pischke, 2009, 173-75) for a defense of conventional practice (“two-stage least squares’’),

which does not demand that each instrument affect only one mediator.

On the use of instrumental variables to estimate indirect effects, see Gennetian, Morris,

Bos, and Bloom (2005). There are many general treatments of instrumental-variables estimation;

we recommend Angrist et al. (1996), Morgan and Winship (2007, ch. 7), and Wooldridge (2008,

ch. 15).

4. Experimental Estimates of Indirect Effects Apply Only to Subjects Who Are

Affected by the Experimental Intervention Or Who Would Be Affected By It If

They Were Exposed to It

Let Mi, the mediator from Equation 3, be a dummy variable. Let Zi be a dummy variable

indicating whether i has been exposed to an intervention designed to change his value of M

(Zi = 1) or has not been exposed to such an intervention (Zi = 0). Let Mi(1) be the value of Mi

when Zi = 1; similarly, let Mi(0) be the value of Mi when Zi = 0. Let Yi(m, z) be the value of Yi if
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Mi = m and Zi = z. For example, Yi(1, 1) is the value of Yi if Mi = 1 and Zi = 1. Mi(1),Mi(0), and

Yi(m, z) are potential outcomes.

Assume that:

1. Zi is independent of the potential outcomes (Zi ⊥⊥ Mi(0),Mi(1),Yi(m, 0),Yi(m, 1) ∀ i).

2. Z affects M (E [Mi(1) − Mi(0)] , 0).

3. Zi satisfies the exclusion restriction. In the context of Equation 3, this implies

Zi ⊥⊥ Xi, ei3 ∀ i.

Barring randomization problems, the first two assumptions are likely to be met by any

randomized intervention that is designed to affect M. As we show in Part 3 of this appendix, the

third assumption is also necessary if we are to use experiments to identify indirect effects. Note

that the third assumption implies that Yi(1, 1) = Yi(1, 0) and Yi(0, 1) = Yi(0, 0). We now simplify

the notation by denoting these potential outcomes Yi(1) and Yi(0).

Now, let Mi = β0 + β1Zi + εi, where Zi ⊥⊥ εi and E [εi] = 0. Combining this with Equation 3,

we have Yi = α3 + dX + b (β0 + β1Zi + εi) + ei3. It follows that

cov(Zi,Yi) = bβ1var (Zi) = {E[Yi|Zi = 1] − E[Yi|Zi = 0]}var (Zi) , and

cov(Zi,Mi) = β1var (Zi) = {E[Mi|Zi = 1] − E[Mi|Zi = 0]}var (Zi) .

From these equations, we see that

b =
cov(Zi,Yi)
cov(Zi,Mi)

=
E[Yi|Zi = 1] − E[Yi|Zi = 0]

E[Mi|Zi = 1] − E[Mi|Zi = 0]
. (A4)
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We can rewrite the numerator of Equation A4:

E[Yi|Zi = 1] − E[Yi|Zi = 0] = E[Yi(0) + (Yi(1) − Yi(0))Mi|Zi = 1] − E[Yi(0) + (Yi(1) − Yi(0))Mi|Zi = 0]

= E[Yi(0) + (Yi(1) − Yi(0))Mi(1)] − E[Yi(0) + (Yi(1) − Yi(0))Mi(0)]

= E[(Yi(1) − Yi(0)) (Mi(1) − Mi(0))].

At this point, we need to invoke the monotonicity assumption (e.g., Angrist et al., 1996): the

experimental intervention does not increase the value of the mediator for some subjects while

decreasing it for others. Formally, Mi(1) ≥ Mi(0) for all subjects or Mi(0) ≤ Mi(1) for all

subjects. Unlike some of the assumptions that we discuss in our article, we do not think that this

assumption is troubling: it is likely to be met in most psychological applications.

Without loss of generality, assume Mi(1) ≥ Mi(0). Then Mi(1) − Mi(0) is 0 or 1 for all

subjects. It follows that the numerator in Equation A4 is

E[Yi|Zi = 1] − E[Yi|Zi = 0] = E[(Yi(1) − Yi(0)) |Mi(1) > Mi(0)] · Pr[Mi(1) > Mi(0)].

Now turn to the denominator of the right-hand side of Equation A4. We have

E[Mi|Zi = 1] − E[Mi|Zi = 0] = E[Mi(1) − Mi(0)]

= Pr[Mi(1) > Mi(0)].

It follows that

b =
cov(Zi,Yi)
cov(Zi,Mi)

= E[(Yi(1) − Yi(0)) |Mi(1) > Mi(0)].

The coefficient b is therefore the average effect of M on Y for “compliers’’ alone—i.e., for

subjects whose value of M would be changed by exposure to Z. Estimators of b estimate this
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“local average treatment effect,’’ not an average treatment effect for all subjects. It follows that

estimates of the indirect effect, ab, will apply to compliers if and only if a is the effect of X on M

for this subgroup.

On local average treatment effects, see Imbens and Angrist (1994) and Sobel (2008,

pp. 244-47). (Angrist et al., 1996, 451) show that if the monotonicity assumption is violated, the

estimand (e.g., b in Equation 3) can be viewed as a weighted average of the average treatment

effect for compliers and the average treatment effect for “defiers.’’

A particular limitation of LATE estimation is that one cannot know exactly who the

compliers are. But it is possible to use summary statistics (e.g., percentage women, percentage

white) to characterize the population of compliers: see Angrist and Pischke (2009, 166-72).

5. Randomization Cannot Identify Average Indirect Effects in the Presence of

Causal Heterogeneity

Let Yi = ciXi + ei1. Yi is the outcome of interest for subject i, Xi ∈ {0, 1} is a treatment, ci is

the effect of Xi on Yi, and ei1 represents the cumulative effect of other variables. (Intercepts are

redundant in this model: ei1 = αi + e∗i1, where αi is an intercept.) The effect of Xi may vary from

subject to subject, in which case ci , c j (for i , j).

When Xi = 1, we denote the value of Yi as Yi(1). And when Xi = 0, we denote the value of

Yi as Yi(0). The effect of Xi on Yi is ci = Yi(1) − Yi(0). We cannot observe both Yi(1) and Yi(0) for

any subject—this is the “fundamental problem of causal inference’’ (Holland, 1986, 947)—and

we therefore cannot observe ci for any subject. But if we randomly assign values of X, we can

estimate the average effect of X, c̄ = E [Yi(1) − Yi(0)], without bias. We do this by observing the

average Yi(1) for the treatment group, Yi(1)|X = 1, and the average Yi(0) for the control group,

Yi(0)|X = 0. This lets us calculate

Yi(1)|X = 1 − Yi(0)|X = 0.
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And if X is independent of Yi(1) and Yi(0) (as is usually the case when X is randomized),

E
[
Yi(1)|X = 1 − Yi(0)|X = 0

]
= E

[
Yi(1)

]
− E

[
Yi(0)

]
= E

[
Yi(1) − Yi(0)

]
= c̄.

However, we cannot use experiments to identify average indirect effects when those

effects vary. Let Mi = aiXi + ei2 and Yi = diXi + biMi + ei3. Mi(1) and Mi(0) are the values that Mi

assumes when Xi = 1 and Xi = 0, respectively. The value of Yi when Xi = 1 and Mi = Mi(1) is

Yi (1,Mi(1)) = di + biMi(1) + ei3

= di + bi (ai + ei2) + ei3.

The value of Yi when Xi = 1 and Mi = Mi(0) is

Yi (1,Mi(0)) = di + biMi(0) + ei3

= di + bi (ei2) + ei3.
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Yi (1,Mi(0)) is the value that Yi would assume if Xi = 1 but Mi took on the value that it would

have if Xi = 0. We cannot observe this quantity for any individual because we cannot assign Xi

to simultaneously equal 1 and 0. Moreover, experiments cannot produce unbiased averages of

this quantity: the quantity is counterfactual, unknowable even in principle. This is problematic

because the indirect effect of Xi involves this quantity. Specifically, the indirect effect is the

change in Yi that we would observe if we held Xi constant at 1 but changed the mediator from

Mi(0) to Mi(1):

Yi (1,Mi(1)) − Y (1,Mi(0)) = di + bi (ai + ei2) + ei3 − [di + bi (ei2) + ei3]

= aibi.
1

We cannot observe ai or bi for any individual. If we conduct an experiment in which only

X is manipulated, we can estimate ā =
∑

ai/n, the average effect of X on M. And if we conduct

an experiment in which M and X are manipulated, we can estimate b̄ =
∑

bi/n, the average effect

of M on Y while holding X constant. But by the laws of covariance, the product of these averages

does not generally equal the average indirect effect. Instead,

E[ai]E[bi] = E[aibi] − cov(ai, bi) .

In words, the product method will produce biased estimates of average indirect effects, and the

bias will equal the covariance of a and b. See Glynn (2009, p. 10-13) for a demonstration that the

1When Xi = 0, the indirect effect of Xi is Yi(0,Mi(1)) − Yi(0,Mi(0)). Almost all mediation
analyses implicitly assume that this quantity is equal to the indirect effect when Xi = 1, but there
is typically no empirical reason to make this “no-interaction’’ assumption: see Robins, 2003,
76-77; Sobel, 2008. For simplicity, we focus here on direct and indirect effects when Xi = 1, but
the same problem obtains when Xi = 0.
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same result holds when the “difference method’’ is used to compute the average indirect effect in

the presence of causal heterogeneity.

6. SPSS Code for Simulations Demonstrating Bias in Mediation Analysis

Caused by Heterogeneous Treatment Effects

* Create ID numbers from 1 to 10000.

INPUT PROGRAM.

LOOP id=1 TO 10000.

END CASE.

END LOOP.

END FILE.

END INPUT PROGRAM.

* Generate a moderator variable called q.

* Change 5000 to some other number in order to change the distribution of q.

RECODE id (0 thru 5000=0)(else=1) into q.

* Generate normal disturbances for the two equations.

COMPUTE e = RV.NORMAL(0,1) .

COMPUTE u = RV.NORMAL(0,1) .

* Generate uniformly distributed independent variable x.

COMPUTE x = RV.UNIFORM(0,1) .

* Generate a mediator variable m that is a function of x, q, and an interaction.

COMPUTE m = q*(x+e) + (1-q)*(-x+e) .

* Generate a dependent variable y that is a function of m, q, and an interaction.

* Note that x has no direct effect on y.

COMPUTE y = q*(m+u) + (1-q)*(-m+u) .

* This regression correctly estimates the average total effect of x on y.
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REGRESSION /DEPENDENT y /METHOD=ENTER x .

* This regression correctly estimates the average direct effect of x on m.

REGRESSION /DEPENDENT m /METHOD=ENTER x .

* This regression incorrectly estimates the direct effect of x on y and the direct

* effect of m on y. Recall that x in fact has no direct effect on y, but the

* regression says otherwise. Moreover, this regression misestimates the direct

* effect of m on y, declaring that m has no direct effect.

REGRESSION /DEPENDENT y /METHOD=ENTER m x .

* Show that one obtains unbiased results when one partitions the sample such

* that there are no heterogeneous effects within subgroups:

* Rerun the last regression for the subsample where q=1.

REGRESSION /SELECT= q EQ 1 /DEPENDENT y /METHOD=ENTER m x .

* Rerun the last regression for the subsample where q=0.

REGRESSION /SELECT= q EQ 0 /DEPENDENT y /METHOD=ENTER m x .
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