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Proof of Proposition 1. It suffices to show that any updater’s belief will converge to x̄, the mean

of the received messages. Let x be the sequence of messages x1, . . . , xn and x̄ be the mean of

these messages. Suppose ε > 0 and N = σ2
x(|µ̂0−x̄|−ε)
σ2

0ε
. Then n > N implies

|µ̂n|x − x| =

∣∣∣∣∣∣σ2
0x + (σ2

x/n)µ̂0 − x(σ2
0 + σ

2
x/n)

σ2
0 + σ

2
x/n

∣∣∣∣∣∣
=

∣∣∣∣∣∣(σ2
x/n)(µ̂0 − x)
σ2

0 + σ
2
x/n

∣∣∣∣∣∣
<
σ2

x |µ̂0 − x|
Nσ2

0 + σ
2
x

=
εσ2

x |µ̂0 − x|
σ2

x (|µ̂0 − x| − ε) + εσ2
x

= ε.

µ̂n|x therefore converges surely to x̄. �

Proposition 1 assumes normal priors and normal likelihoods because of the near-ubiquity

of those assumptions in Bayesian public opinion studies. But the proposition is subsumed by

several results that do not make strong distributional assumptions about the prior belief or the

likelihood. Blackwell and Dubins (1962) show that convergence to agreement will occur when

different priors are absolutely continuous with respect to each other, i.e., when they assign

positive probability to exactly the same set of events. (Normal priors, like those considered in

Proposition 1, are absolutely continuous with respect to each other.) Moreover, it is well-known

that different Bayesian priors are consistent (and thus converge to agreement) under a wide range

of conditions, chief of which are that the prior beliefs do not exclude the true parameter value as

impossible, that the dimensionality of the parameter space is finite, and that the signals received

are informative about the true parameter values (Doob 1949; Savage 1954, 46-50; Walker 1969;

for discussions, see Lindley 1972, 61-64 and Diaconis and Freedman 1986).
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Proof of Proposition 2. By a common result (e.g., Lee 2004, 38-39), one has the same posterior

belief whether he updates in response to the n messages x1, . . . , xt, . . . , xn or in response to a

single message x =
n∑

t=1
xt/n with precision τx∗ =

n∑
t=1
τxt. Thus, by Equation 1a,

|µ̂Dn − µ̂Rn| =

∣∣∣∣∣∣µ̂D0

(
τD0

τD0 + τx∗

)
− µ̂R0

(
τR0

τR0 + τx∗

)
+ x

(
τx∗

τD0 + τx∗
−

τx∗

τR0 + τx∗

)∣∣∣∣∣∣
=

∣∣∣∣∣∣ (τR0 + τx∗) (µ̂D0τD0)
(τR0 + τx∗)(τD0 + τx∗)

−
(τD0 + τx∗)µ̂R0τR0

(τD0 + τx∗)(τR0 + τx∗)
+ x

(
τx∗

τD0 + τx∗
−

τx∗

τR0 + τx∗

)∣∣∣∣∣∣
=

1
(τD0 + τx∗)(τR0 + τx∗)

∣∣∣∣∣(µ̂D0 − µ̂R0)τD0τR0 + (x − µ̂R0)τR0τx∗ + (µ̂D0 − x)τD0τx∗

∣∣∣∣∣ .
Divergence requires

|µ̂D0 − µ̂R0| <
1

(τD0 + τx∗)(τR0 + τx∗)

∣∣∣∣∣(µ̂D0 − µ̂R0)τD0τR0 + (x − µ̂R0)τR0τx∗ + (µ̂D0 − x)τD0τx∗

∣∣∣∣∣ ,
which implies |µ̂D0 − µ̂R0| (τD0+τx∗)(τR0+τx∗) < |(µ̂D0 − µ̂R0)τD0τR0 + (x − µ̂R0)τR0τx∗ + (µ̂D0 − x)τD0τx∗|.

If µ̂D0 ≥ µ̂R0, this inequality holds only when (x− µ̂R0)τR0τx∗ + (µ̂D0 − x)τD0τx∗ is greater than a or

less than b. And if µ̂D0 ≤ µ̂R0, this inequality holds only when (x− µ̂R0)τR0τx∗ + (µ̂D0 − x)τD0τx∗ is

less than a or greater than b. �

Proof of Corollary to Proposition 2. Proof of (a) by contradiction. Without loss of generality,

assume µ̂D0 > µ̂R0. Assume divergence even though x ∈
[
µ̂R0, µ̂D0

]
. By Proposition 2, one of two

conditions must be satisfied if divergence is to occur. First, it will occur if (µ̂D0 − x)τD0τx∗ + (x −

µ̂R0)τR0τx∗ > (µ̂D0 − µ̂R0) [(τD0 + τx∗) (τR0 + τx∗) − τD0τR0] ⇒ 0 > (µD0 − x)(τR0τx∗ + τ
2
x∗) +

(x − µ̂R0)(τD0τx∗ + τ
2
x∗), which is impossible because (µD0 − x), (x − µ̂R0), and the precisions

are all nonnegative. Second, divergence will occur if (µ̂D0 − x)τD0τx∗ + (x − µ̂R0)τR0τx∗ <

(µ̂R0 − µ̂D0) [(τD0 + τx∗) (τR0 + τx∗) + τD0τR0]. But this inequality cannot hold, either, because

(µ̂D0 − x)τD0τx∗ + (x − µ̂R0)τR0τx∗ ≥ 0 and (µ̂R0 − µ̂D0) [(τD0 + τx∗) (τR0 + τx∗) + τD0τR0] ≤ 0. This

establishes that divergence cannot occur when x ∈
[
min {µ̂D0, µ̂R0} ,max {µ̂D0, µ̂R0}

]
.
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Proof of (b) by direct calculation. If σ2
D0 = σ2

R0, the condition for divergence given in

Proposition 2 reduces to (µ̂D0 − µ̂R0)τD0τx∗ < [min{a′, b′},max{a′, b′}], where

a′ = (µ̂D0 − µ̂R0)[(τD0 + τx∗)2 − τ2
D0] and b′ = (µ̂R0 − µ̂D0)[(τD0 + τx∗)2 + τ2

D0]. This cannot

be: if µ̂D0 > µ̂R0, b′ < (µ̂D0 − µ̂R0)τD0τx∗ < a′; if µ̂D0 < µ̂R0, a′ < (µ̂D0 − µ̂R0)τD0τx∗ < b′; if

µ̂D0 = µ̂R0, (µ̂D0 − µ̂R0)τD0τx∗ = a′ = b′ = 0. �

Proof of Proposition 3. Proof by cases. First, assume x > max {µ̂D0, µ̂R0}. Then by Equation 1a,

µ̂Dn > µ̂D0 and µ̂Rn > µ̂R0, so (µ̂Dn − µ̂D0) / (µ̂Rn − µ̂R0) > 0. Next, assume x < min {µ̂D0, µ̂R0}.

Then by Equation 1a, µ̂Dn < µ̂D0 and µ̂Rn < µ̂R0, so (µ̂Dn − µ̂D0) / (µ̂Rn − µ̂R0) > 0. By the

Corollary to Proposition 2, we need not consider the case in which x ∈ [min{µ̂D0, µ̂R0},max{µ̂D0, µ̂R0}].�

Proof of Proposition 4. We begin with three lemmas:

Lemma 1. The Kalman filter estimator µ̂t can be written as a linear function of the mean

of the prior belief, µ̂0, and the new messages that have been received, xt: µ̂t = ctµ̂0 + f′t xt,

where ct =
t∏

i=1
(1 − Ki)γ, Ki = σ2

i /σ
2
x is the “Kalman gain,” f′t is a 1 × t vector of

coefficients, and xt is the t× 1 vector of messages x1, . . . , xt. (See Gerber and Green 1998,

805 for a proof specific to the Kalman filter; for a general statement, see Theorem 2 in

Diaconis and Ylvisaker 1979. Note a clerical error in Gerber and Green 1998: the article

has ct =
t∏

i=1
(1 − Ki)γt instead of the correct ct =

t∏
i=1

(1 − Ki)γ.)

Let f ′t[i] be the ith element of f′t . Then f ′t[i] = γ
t−iKi

t∏
j=i+1

(1 − K j) for i ∈ 1, . . . , t − 1,

and f ′t[i] = Ki for i = t. Proof by induction: for i = 1, µ̂1 = γµ̂0(1 − K1) + x1K1 (by

Equation 3a), so f ′1[1] = K1. Assume that the statement is true for i = t. Then for i = t + 1,

µ̂t+1 = γµ̂t(1 − Kt+1) + xt+1Kt+1

= γ(1 − Kt+1)
(
ctµ̂0 + f′t xt

)
+ xt+1Kt+1

= γ(1 − Kt+1) (ctµ̂0) + f′t+1xt+1,
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where the last element of f′t+1 is Kt+1 and the other elements are given by f ′t+1[i] =

f ′t[i](1 − Kt+1)γ =
[
γt−iKi

t∏
j=i+1

(1 − K j)
]

(1 − Kt+1)γ = γt+1−iKi
t+1∏

j=i+1
(1 − K j). �

Lemma 2.

plim Kt = K =
γ2 − h − 1 +

√
(−γ2 + h + 1)2 + 4hγ2

2γ2

where h = σ2
µ/σ

2
x. (See Gerber and Green 1998 for a proof.)

Lemma 3. 0 ≤ (1 − K)γ < 1. By definition, K < 1 and γ ≥ 0. It follows immediately that

0 ≤ (1 − K)γ. For the claim (1 − K)γ < 1, proof by contradiction: assume (1 − K)γ ≥ 1.

Note that 0 < K < 1 because Kt = σ
2
t /σ

2
x =

1/σ2
x

1/(γ2σ2
t−1+σ

2
µ)+1/σ2

x
. This implies 0 < (1−K) < 1.

Therefore, (1 − K)γ ≥ 1 implies γ > 1. Now,

(1 − K) γ ≥ 1

⇒

1 − γ2 − h − 1 +
√

(−γ2 + h + 1)2 + 4hγ2

2γ2

 γ ≥ 1

⇒ −4γ3 + 8γ2 − 4γh − 4γ ≥ 0.

This implies h ≤ −γ2 + 2γ − 1. But −γ2 + 2γ − 1 < 0 ∀ γ < [−1, 1], and h must be

nonnegative because it is a ratio of variances. Contradiction. �

With these lemmas in hand, the proof is straightforward. We need to show plim (µ̂Dt −

µ̂Rt) = 0. By Lemma 1, the difference between the means of updaters’ beliefs at any time t is

µ̂Dt − µ̂Rt = µ̂D0
t∏

i=1
(1 − KDi)γ − µ̂R0

t∏
i=1

(1 − KRi)γ +
(
f′Dt − f′Rt

)
xt. Because plim y

∞∏
i=1

zi = 0 for any

constant y if plim |zi| < 1, plim µ̂D0
t∏

i=1
(1 − KDi)γ = 0 if plim |(1 − KDi)γ| < 1. And by Lemma 3,

it is. This establishes plim µ̂D0
t∏

i=1
(1−KDi)γ = 0, and by the same logic, plim µ̂R0

t∏
i=1

(1−KRi)γ = 0.

We now have plim (µ̂Dt − µ̂Rt) = plim
(
f′Dt − f′Rt

)
xt. This equals 0 if plim

(
f′Dt − f′Rt

)
= 0,

i.e., if lim
t→∞

f ′Dt[i] − f ′Rt[i] = 0 for all i. It does. For i ∈ 1, . . . , t − 1, f ′Dt[i] = KDi
t∏

j=i+1
(1 − KD j)γ by

Lemma 1, and because plim |(1 − KDi)γ| < 1 (by Lemma 3), plim f ′Dt[i] = 0 for i ∈ 1, . . . , t − 1.

By the same logic, plim f ′Rt[i] = 0 for i ∈ 1, . . . , t−1, so lim
t→∞

f ′Dt[i]− f ′Rt[i] = 0−0 for i ∈ 1, . . . , t−1.
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For i = t, plim f ′Dt[i] = f ′Rt[i] = K by Lemma 2. This establishes lim
t→∞

f ′Dt[i] − f ′Rt[i] = 0 for all i,

completing the proof. �

Proof of Proposition 5. Proof by contradiction. Let z = KDu(xu −γµ̂Dt)−KRu(xu −γµ̂Rt). Assume

no divergence even though z < [min{a, b},max{a, b}]. Then

|µ̂Dt − µ̂Rt| ≥ |µ̂Du − µ̂Ru|

= |γµ̂Dt(1 − KDu) + xuKDu − γµ̂Rt(1 − KRu) − xuKRu|

= |γ(µ̂Dt − µ̂Rt) + z| .

If µ̂Dt ≥ µ̂Rt, b ≤ a, and the inequality holds only when z ≥ b and z ≤ a. If µ̂Dt ≤ µ̂Rt, a ≤ b, and

the inequality holds only when z ≥ a and z ≤ b. Either case is a contradiction. This establishes

that divergence occurs if z < [min{a, b},max{a, b}].

Now assume divergence even though z ∈ [min{a, b},max{a, b}]. Then

|µ̂Dt − µ̂Rt| < |µ̂Du − µ̂Ru|

= |γ(µ̂Dt − µ̂Rt) + z| .

If µ̂Dt ≥ µ̂Rt, b ≤ a, and the inequality holds only when z > a or z < b. If µ̂Dt ≤ µ̂Rt, a ≤ b, and

the inequality holds only when z < a or z > b. Either case is a contradiction. This establishes that

divergence occurs only if z < [min{a, b},max{a, b}]. �

Proof of Corollary to Proposition 5. Suppose σ2
Dt = σ2

Rt. Then KDu = σ2
Du/σ

2
x = KRu =

σ2
Ru/σ

2
x = Ku. In this case, divergence requires
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|µ̂Dt − µ̂Rt| < |µ̂Du − µ̂Ru|

= |γµ̂Dt(1 − Ku) − γµ̂Rt(1 − Ku)|

= |γ(µ̂Dt − µ̂Rt) + Kuγ(µ̂Rt − µ̂Dt)|

= (1 − Ku)γ |µ̂Dt − µ̂Rt|

⇒ 1 < (1 − Ku)γ.

This condition does not depend on the value of xu. Thus, divergence when learning about a

changing condition requires neither σ2
Dt = σ

2
Rt nor xu ∈

[
min {µ̂Dt, µ̂Rt} ,max {µ̂Dt, µ̂Rt}

]
. �

Proof of Proposition 6. Proof by cases. By definition, polarization occurs between t and u

iff divergence occurs between t and u and (µ̂Du − µ̂Dt) /(µ̂Ru − µ̂Rt) < 0 . Assume µ̂Du > µ̂Dt.

Polarization under this condition implies µ̂Ru < µ̂Rt. We have µ̂Du > µ̂Dt ⇒ γµ̂Dt − γµ̂DtKDu +

xuKDu > µ̂Dt ⇒ KDu(xu − γµ̂Dt) > (1 − γ)µ̂Dt and µ̂Ru < µ̂Rt ⇒ γµ̂Rt − γµ̂RtKRu + xuKRu < µ̂Rt ⇒

KRu(xu − γµ̂Rt) < (1 − γ)µ̂Rt.

Now assume µ̂Du < µ̂Dt. Polarization under this condition implies µ̂Ru > µ̂Rt. We

have µ̂Du < µ̂Dt ⇒ γµ̂Dt − γµ̂DtKDu + xuKDu < µ̂Dt ⇒ KDu(xu − γµ̂Dt) < (1 − γ)µ̂Dt and

µ̂Ru > µ̂Rt ⇒ γµ̂Rt − γµ̂RtKRu + xuKRu > µ̂Rt ⇒ KRu(xu − γµ̂Rt) > (1 − γ)µ̂Rt.

Now assume µ̂Du = µ̂Dt. By definition, polarization cannot occur under this condition,

because (µ̂Du − µ̂Dt) /(µ̂Ru − µ̂Rt) cannot be negative. �
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