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 This memo concerns knowledge, measured at the end of an experiment whose treatment 
is designed to increase it.  Following Prior and Lupia, I consider the post-treatment (t2) contrast 
between the treatment and control groups, although the same points hold if the contrast is instead 
between the treatment group at t2 versus t1.  I shall speak loosely of “increases,” meaning, strictly 
speaking, in the Prior-Lupia context, upward differences.   
 
 Denote the control group’s mean t2 knowledge level by K1, and the treatment group’s by 
K2.  To simplify the formulas and the arithmetic, let us take these to be proportions, while 
continuing (for sake of consistency with the text) to refer to them as percentages (the proportions 
times 100).  Then the increase in the percentage is 
 
   K∆  = 2 1K K− ; 
 
the percentage increase is 
 
   %

K∆  = 2 1 1( ) /K K K− ; 
 
and the percentage reduction in error is  
 
   %

(1 )K−∆  = 1 2 1[(1 ) (1 )] /(1 )K K K− − − −  = 2 1 1( ) /(1 )K K K− − .  
 
Thus, for example, K1 = .60 and K2 = .80 implies K∆ = .80 − .60 = .20,  %

K∆  = (.80 − .60)/.60 = 
.333…, and %

(1 )K−∆  = (.60/.40)(.333…) = .50.  
 
 The most important point to note about the difference in the percentage K∆ is that it is the 
treatment effect.  As anyone reading this probably knows, the standard definition of a 
regressor’s, say x1’s, effect (needing some footnoting in the presence of endogeneity) is as the 
partial derivative of the conditional expectation of the dependent variable with respect to x1:  

1( ( | )i i iE y X x∂ ∂ , where Xi is the vector of the ith observation on all the equation’s regressors.  
In a linear model that makes x1’s effect 1γ , its coefficient.  In the present context, where there’s 
just one, binary regressor, scored {0,1}, 1γ  works out in turn to the difference of proportions, 

K∆ . 
 
 The percentage difference %

K∆  and the percentage reduction in error %
(1 )K−∆ , by contrast, 

are normings, dividing the effect by K1 and 1− K1, respectively.  Since 0 ≤ K1 ≤ 1, both %
K∆  and 



%
(1 )K−∆  must necessarily exceed K∆ (in absolute value, should K∆  be negative), except when K1 = 

0 (in which case, %
(1 )K−∆  = K∆ , and %

K∆  is undefined) or K1 = 1 (in which case %
K∆   = K∆ , and 

%
(1 )K−∆  is undefined).  The departure from K∆ can be either tiny or vast.  If K1 = .01 and K2 = .02, 

K∆ = .01 and %
(1 )K−∆  = .0101, but %

K∆  = 1.00.  On the other hand, if K1 = .99 and K2 = 1.00, K∆

again = .01 and %
K∆  now = .0101, but %

(1 )K−∆  now = 1.00.  I.e., a 1% increase in knowledge is a 
100% percentage increase but only a 1.01% percentage reduction in error if it is an increase from 
1% to 2% and is a 100% percentage reduction in error but only a 1.01% percentage increase if it 
is an increase from 99% to 100%.     
 
 As these last examples suggest, %

K∆  and %
(1 )K−∆  are intimately and inversely related, each 

an upside-down version of the other.  More precisely,    
 
    %

(1 )K−∆  = [ 1 1/(1 )K K− ]( %
K∆ ), 

 
(excluding the cases in which K1 = 0 or 1 and either %

K∆  and %
(1 )K−∆  is therefore undefined).  The 

two are equal at K1 = .5.  For K1 < .5, Abs( %
K∆ ) > Abs( %

(1 )K−∆ ); for K1 > .5, the reverse.  At the 
extremes, as we have seen, the one will be huge, the other scarcely more than K∆ .  So the 
percentage increase %

K∆ , the formula Prior and Lupia employ, is the one that will make increases 
from low to lowish initial percentages (K1 < .5, as in Prior and Lupia’s results) look largest.  
Again, however, both %

K∆  and %
(1 )K−∆  are mere forms of elaboration.  The actual treatment effect 

is the increase (or decrease) in the percentage.   


